Role of F-actin organization in p38 MAP kinase-mediated apoptosis and necrosis in neonatal rat cardiomyocytes subjected to simulated ischemia and reoxygenation.
نویسندگان
چکیده
Activation of p38 mitogen-activated protein (MAP) kinase (MAPK) has been implicated in the mechanism of cardiomyocyte (CMC) protection and injury. The p38 MAPK controversy may be related to differential effects of this kinase on apoptosis and necrosis. We have hypothesized that p38 MAPK-mediated F-actin reorganization promotes apoptotic cell death, whereas it protects from osmotic stress-induced necrotic cell death. Cultured neonatal rat CMCs were subjected to 2 h of simulated ischemia followed by reoxygenation. p38 MAPK activity measured by phosphorylation of MAP kinase-activated protein (MAPKAP) kinase 2 was increased during simulated ischemia and reoxygenation. This was associated with translocation of heat shock protein 27 (HSP27) from the cytosolic to the cytoskeletal fraction and F-actin reorganization. Cytochrome c release from mitochondria, caspase-3 activation, and DNA fragmentation were increased during reoxygenation. Robust lactate dehydrogenase (LDH) release was observed under hyposmotic (140 mosM) reoxygenation. The p38 MAPK inhibitor SB-203580 abrogated activation of p38 MAPK, translocation of HSP27, and F-actin reorganization and prevented cytochrome c release, caspase-3 activation, and DNA fragmentation. Conversely, SB-203580 enhanced LDH release during hyposmotic reoxygenation. The F-actin disrupting agent cytochalasin D inhibited F-actin reorganization and prevented cytochrome c release, caspase-3 activation, and DNA fragmentation, whereas it enhanced LDH release during hyposmotic reoxygenation. When CMCs were incubated under the isosmotic condition for the first 15 min of reoxygenation, SB-203580 and cytochalasin D increased ATP content of CMCs and prevented LDH release after the conversion to the hyposmotic condition. These results suggest that F-actin reorganization mediated by activation of p38 MAPK plays a differential role in apoptosis and protection against osmotic stress-induced necrosis during reoxygenation in neonatal rat CMCs; however, the sarcolemmal fragility caused by p38 MAPK inhibition can be reversed during temporary blockade of physical stress during reoxygenation.
منابع مشابه
Effect of p38 MAP kinase on cellular events during ischemia and reperfusion: possible therapy.
MYOCARDIAL ADAPTATION TO ISCHEMIA occurs through the activation of several tyrosine kinases (3). Phosphorylation of tyrosine kinases has been shown to be linked with the activation of both phospholipase C and phospholipase D, leading to the activation of multiple kinases including PKC and mitogen-activated protein (MAP) kinases. The MAP kinases play an essential role in mediating intracellular ...
متن کاملInhibition of extracellular signal-regulated kinase enhances Ischemia/Reoxygenation-induced apoptosis in cultured cardiac myocytes and exaggerates reperfusion injury in isolated perfused heart.
Three major mammalian mitogen-activated protein kinases, extracellular signal-regulated kinase (ERK), p38, and c-Jun NH(2)-terminal protein kinase (JNK), have been identified in the cardiomyocyte, but their respective roles in the heart are not well understood. The present study explored their functions and cross talk in ischemia/reoxygenation (I/R)-induced cardiac apoptosis. Exposing rat neona...
متن کاملRole of heme oxygenase-1 in the cardioprotective effects of erythropoietin during myocardial ischemia and reperfusion.
We have recently demonstrated that erythropoietin (EPO) protects cardiomyocytes from apoptosis during myocardial ischemia-reperfusion (I/R). The objective of the present study was to investigate the role of heme oxygenase (HO)-1 in the antiapoptotic effects of EPO. Primary cultures of neonatal mouse cardiomyocytes were subjected to anoxia-reoxygenation (A/R). Pretreatment with EPO significantly...
متن کاملInduction of necrosis but not apoptosis after anoxia and reoxygenation in isolated adult cardiomyocytes of rat.
OBJECTIVES Apoptosis is one feature of myocardial damage after ischemia-reperfusion, but the causes for its induction are unclear. The present study was undertaken to investigate whether apoptosis in cardiomyocytes is directly initiated by their sub-lethal injury that results from ischemia-reperfusion. METHODS Ischemia was simulated on isolated ventricular cardiomyocytes of adult rats by anox...
متن کاملApplication of 3D-QSAR on a Series of Potent P38-MAP Kinase Inhibitors
One of the most applied methods in drug industry for development of new drugs is 3D-QSAR methodology. As p38-mitogen-activated protein kinase (p38-MAPK) plays a crucial role in regulating the production of such proinflammatory cytokines as tumor necrosis factor-α (TNF-α) and interleukin-1, emerging as an attractive target for new anti-inflammatory agents, we used a 3D-QSAR based method of Compa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 289 6 شماره
صفحات -
تاریخ انتشار 2005